
● MMDVM_Bridge
○ Overview

■ MMDVM_Bridge is used to provide an interconnection between digital
networks. It does this by decomposing each network protocol and
creating an agnostic version of the stream. This generalized form can
then be re-constructed into a new network stream of a different type.
MMDVM_Bridge works in conjunction with other bridging tools to allow for
the connection of networks with differing audio formats and metadata
components. Support for DMR, D-Star, Yaesu Fusion, P25 and NXDN
networks are provided. In addition, bridging to analog networks
(AllstarLink, Echolink) can be accomplished with little effort.

■ One of the main benefits of MMDVM_Bridge is that it allows the bridge to
be administered by you. No need for a network provider to set up the
interconnect, you are in full control. You can add or remove interconnects
at any time depending on your needs. The system can be set up on a
local server or deployed in the cloud and uses very little system
resources.

■ We see two main use cases for this technology. Using it as a way to
create interconnects between established talkgroups on different
networks in order to allow a user to access the system with the mode of
their choice. And, to allow for the creation of ad-hoc interconnects in
times of emergency when multiple modes are being used.

■ Discussion for this project can be found on the DVSwitch message board,
https://dvswitch.groups.io/g/main

■ Wow, does it wash my car too?
Would you like hot wax with that?

○ Architecture
■ DVSwitch Partner

■ A Partner transforms a stream from one protocol to another
■ A stream is composed of

■ Signaling (start/stop tx)
■ Metadata (IDs, callsign, slow data)
■ Audio

■ MMDVM_Bridge separates streams into two types; foreign and
generic (or TLV).

■ On one side of the bridge we have the foreign network.
The foreign network is a protocol specific network such as
DMR, P25, YSF, D-Star or NXDN. Each of these foreign
networks has a different encoding, error correction,
metadata and signaling.

■ In order to create the generic side of the bridge, we use
TLV. TLV (Tag, Length, Value) is a protocol agnostic
version of the network stream. Foreign network streams

are converted into TLV so they can be further transformed
into a second type of foreign network stream (a bridge).

■ Tag
● Tags are commands or states

■ Length
● Length in bytes of the payload

■ Value
● Tag dependant

■ Ports
■ All ports are UDP
■ Most modes are defined with a RX port, a TX port and a IP

address. The RX port waits for incoming data and processes it.
The TX port sends data to a second Partner instance at the IP
address specified.

■ Payload
■ TLV types

■ Begin Transmission
■ Source ID (24 bit)
■ Destination ID (24 bit)
■ Repeater ID (32 bit)
■ Slot (8 bit)
■ Color Code (8 bit)
■ Extended metadata (callsign)

■ End Transmission
■ Slot

■ Audio Data
■ Slot
■ AMBE - 72 bit : DMR, Yaesu Fusion Narrow, NXDN
■ IMBE - 88 bit : P25, Yaesu Fusion Wide
■ DSAMBE - 48 bit : D-Star
■ Depending on mode, audio TLV may contain 1 or

more AMBE / IMBE / DSAMBE frames.
○ Installation

■ MMDVM_Bridge is part of a Linux suite of applications which is designed
to run on a variety of hardware platforms. You can install these tools on
single board computers, servers or cloud based systems. Because the
suite has a significant number of components, installation packages have
been created to help you get started. A set of “metapackages” have also
been created that group common packages together so installation gets
even easier for most situations.

■ Installing MMDVM_Bridge or any other DVSwitch package is easy
provided that you follow the directions. You must have the proper

hardware and operating system version or the install will not be
successful.

■ Prerequisites
■ Hardware platforms

■ Raspberry Pi / SBC
■ The code is very portable and runs on a variety of

ARM processors. We have tested on about every
SBC you can think of with good results. However,
there is one component that is VERY processor
specific, the md380-emulator. If you plan on
running this component, you must be running on a
supported processor with the proper underlying
command structure. Pi2, Pi3, H3, H5 are good
matches.

■ X86 / AMD64
■ USB

■ DV3000U. If you are planning on using the
DV3000U please make sure that you have a solid
5V power source for the USB dongle. Any voltage
drops below 5V will surely cause problems.
AMBETest4.py can help you determine if your USB
port is supplying enough power for reliable
operation.

■ Operating systems
■ Debian Stretch is the main supported platform. Other

platforms can be built, but for pre-compiled installation
packages, Stretch will be the platform of choice. We
support x86 (32 bit) and x64/AMD64 for intel hardware and
ARM64 for ARM processors.

■ Virtual Machines
■ Yes, provided that they are running a supported processor

and have a proper version of Linux installed. If you are
planning on also installing ASL, please make sure you
have access to the kernel header package before going
forward.

■ Required disk storage
■ Datafiles

■ The data files (DMR IDs and NXDN IDs) are small
and should never take up much space on the disk.
They should not be a concern to the system admin.

■ Logs
■ Log files can grow forever if not managed. First,

make sure you have the proper log level set for

your stage of development and deployment. If you
are in development of your bridge, a verbose log
level will help you debug any issues you have with
the bridge. But the size of the log will get very large
as time goes on, so you probably do not want to
keep the logLevel set to 1 for long. When yiou are
ready to deploy your bridge, a log level of 2 is
probably a good choice.

■ You should have a plan for log rotation and
possibly keeping logs in a ram disk or other file
system.

■ Required memory
■ Root privileges

■ Either sudo or root are required to administer the system.
■ Packages

■ The available packages are:
■ dvswitch_base, Analog_Bridge, md380-emu,

MMDVM_Bridge, P25Gateway, P25Parrot.
■ The metapackages are named ​dvswitch​ and ​quantar​.
■ dvswitch​ contains

■ dvswitch_base, Analog_Bridge, md380-emu and
MMDVM_Bridge

■ quantar​ contains
■ dvswitch_base, MMDVM_Bridge, Quantar_Bridge

P25Gateway, P25Parrot
■ After installing the repository, you can install either ​dvswitch​ or

quantar​ or both
■ Installation
■ To install the repository (as root):

cd​ /tmp
wget http://dvswitch.org/install-dvswitch-repo

chmod +x install-dvswitch-repo

./install-dvswitch-repo

apt-get update

apt-get upgrade

apt-get install dvswitch quantar

■ Getting updates
■ This is as simple as it could be (as root):

apt-get update

apt-get upgrade

■ Updates and existing configuration files

Don’t worry about an update overwriting a configuration file
that you may have edited. One of the best parts of the
package system is that it will only overwrite clean files. It
will ask you if you want to backup your existing changes,
so update early, update often!

■ File locations
■ Programs

In /opt/program_name
/opt/MMDVM_Bridge/MMDVM_Bridge

■ Configuration files
With the program
/opt/MMDVM_Bridge/MMDVM_Bridge.ini

■ Datafiles
In /var/lib/mmdvm or /var/lib/dvswitch
/var/lib/mmdvm/DMRIds.dat

■ Logs
In /var/log/mmdvm or /var/log/dvswitch
/var/log/mmdvm/MMDVM_Bridge-2018-05-22.log

■ Scripts
In /usr/local/sbin
/usr/local/sbin/DMRIDUpdate.sh

■ Sample Configuration files
/usr/share/doc/dvswitch

■ Daily cron tasks to update data files
/etc/cron.daily/DMRIDUpdate (this is a symbolic link to the script
In /usr/local/sbin Note: If you want to add a link the link name
should not have a extension (.sh)

■ Optional components
■ Analog_Bridge

■ For bridging to an analog network or transcoding
■ DMRLink

■ For bridging to an IPSC DMR network
■ HBLink

■ For bridging to a HomeBrew network
■ Gateways : P25Gateway, NXDNGateway, ircDDBGateway

■ Some modes require a gateway to communicate with their
network “reflector”.

■ Reflectors
■ If you are also setting up your own reflector, install the

reflector code from github.
■ Quantar_Bridge

■ Used for including a Quantar repeater in your network.

■ AllstarLink
■ For linking to analog users on ASL or Echolink
■ For including users on mobile handsets

■ Dashboards
■ Configuration files
■ MMDVM_Bridge.ini

■ Defines the network side of the stream for each supported mode
■ Split in a general section, mode specific and mode network

sections
■ DVSwitch.ini

■ Used to define the “generic” side of the network
■ One stanza per mode: [MODE] where mode is DMR, DSTAR, etc
■ All modes begin with settings for

■ Address
■ RXPort
■ TXPort

■ Optional settings per mode
■

■ File placement best practices
■ Either with the program or in /etc
■ Program is started with ​program config.ini

○ Building Bridges
■ Let's talk philosophy for a moment. We think that if you understand our

mindset in how these components are intended to be used, you will likely
be more successful in getting them to do what you want. We are widget
makers. A widget serves a set of purposes, has a known interface and
intended use cases.

■ For MMDVM_Bridge, the purpose is to convert network streams into a
generic format so that it can further be reconstructed into a new format.
Pretty simple. Network on one side and TLV on the other. The network
side is a magic bag of bits representing a mode like DMR, NXDN, P25,
etc. The goal of the TLV is to represent (transform) all of that information
in a generic (or abstracted) data structure.

■ The interface to MMDVM_Bridge is the network. This is defined in
MMDVM_Bridge.ini. On the mode side, the connection to the outside
world depends upon the mode being used. Some modes connect to
gateways, others to reflectors and still others to other bridges. Each
mode is different and you have to have some knowledge of the network
you are connecting to in order to configure this side of the bridge. Google
and the links in this document can help you in this research, but it would
be beyond the scope of this tome to try to detail all of the information you
need to understand. On the plus side, we offer the most common
scenarios as samples and for most people, this is a great starting place.

■ On the TLV side, we speak UDP. This is defined in DVSwitch.ini. A TLV
packet is transmitted to a specific IP and port of the receiver. The
receiver is the intended “consumer” of the TLV. It can be thought of as the
goal of the transform. For example, if I wanted to bridge DMR to YSFn, I
would connect the network side if the bridge to Brandmeister and the TLV
would point at a YSFn partner. The goal is to take my input, DMR, and
pass it on to a YSFn centric partner. So, I set my IP and TXPort to the
YSFN listener (RXPort).

■ In the reverse direction, I would like to take any TLV I receive (consume)
and send it to my network (DMR). So, I define a RXPort and anyone who
wants to send me TLV that should go to my DMR network would use my
RX port as the target. See?

■ Here is the greatest hint I can give you: ​Draw a picture.​ Label it with
modes and directions and ip:ports. For example
BM < -- > MMDVM_Bridge < -- > MMDVM_Bridge < -- >

YSFn

 127.0.0.1: ​xxxx ​ -- > RXPort: ​xxxx
 RXPort: ​yyyy ​ < -- 127.0.0.1: ​yyyy

■ See how the ​transmit port​ (TXPort in the ini file) on one side matches up
with the ​receive port​ (RXPort in the ini file​)​ on the other side? Once you
have this picture, it is just a matter of going to the various ini files and
setting the values to match your diagram.

■ MMDVM_Bridge can be
■ Used to bridge like and unlike audio formats
■ Used in a single instance if desired
■ In general, every bridge can be thought of as a stream with an

input and an output. The object of the bridge is to transform all of
the data presented to the input to a form compatible with the
output network. This transform can be simple and accomplished
in a single step, or complex requiring several steps and
components. The more alike the two networks are, the easier it is
to perform the transform.

■ Like audio types
■ Bridging like audio types means that the encoded audio is

preserved without modification. It is not transcoded or modified in
any way except for error correction. Audio quality between like
networks is preserved with no loss. The job of these bridges is to
extract the audio and metadata from the network packet
(envelope) and present them in a generic way to a cooperating
partner. That partner then adds a new envelope around the audio
and metadata and sends the result to the new network.

■ There are 3 digital audio types AMBE, IMBE and DSAMBE. DMR,
NXDN and Yaesu Fusion Narrow are all AMBE audio types

(ambe3600x2450). P25 and Yaesu Fusion Wide are both IMBE
(imbe7200x4400) audio types. And finally, D-Star is all by itself
with DSAMBE (ambe3600x2400). The three AMBE networks and
the two IMBE networks can be bridged together using only
MMDVM_Bridge.

■ MMDVM_Bridge.ini
■ Enable both modes including any callsigns, IDs or settings
■ Enable network for mode

■ Make sure that ports and IP address properly point
to the gateway or server

■ DVSwitch.ini
■ Make RX -> TX port and TX -> RX port
■ IP address should be loopback (127.0.0.1) for single

instance
■ Set up fallback IDs and other metadata

■ Un-alike audio types (transcoding)
■ Bridging un-alike audio types requires the same transforms as the

“like audio” case above. However, in addition to the basic
transforms, the audio must also be converted from one format to
another. This audio transform is accomplished by decoding the
source audio frame into PCM (analog) and then re-encoding the
PCM into the new audio format. This process is lossy and audio
quality suffers in the transformation.

■ Uses Analog_Bridge to transcode
■ 2 instance of AB which

■ Decode first mode into PCM
■ Encode PCM into second mode

■ AB PCM ports are crossed over
■ AB TLV ports point to respective ports in ​DVSwitch.ini
■ Setting audio levels when transcoding

■ DVSwitch.ini
■ Each mode points to the ports in one of the AB instances
■ Set fallback IDs and other metadata

■ This is where the diagram gets much more complex, but becomes
even more valuable to getting the operation correct. Break down
the job into chunks. We often recommend that you build a bridge
from the outside in. What that means is to make sure you can
connect to the foreign network first, with all login, metadata, call
signs, etc functioning before proceeding. Do you see your data
flowing at the edges? If so, then move inside one step.
DSTAR <-> MB1 ​ <-> ​AB1 <-> AB2 ​ <-> ​MB2 <-> BM
 I1: ​p1 ​ -> {[rx: ​p1 ​ i2: ​p2 ​] -> [rx: ​p2 ​ i3: ​p3 ​]} -> rx: ​p3
 ​rx:p4 <- {[i4:p4 ​ ​rx: ​p5 ​] <- [i5: ​p5 ​ ​rx: ​p6 ​]} <- i6: ​p6

■ So, here we want to verify we can connect to D-Star and
Brandmeister first. D-Star connects to ircddbgateway, so make
sure your MMDVM_Bridge.ini file is set up with all the right
addresses, ports callsign and modules to connect to
ircddbgateway. Same goes for your connection to BrandMeister.

■ Next we see we have to connect MMDVM_Bridge1 to
Analog_Bridge1 and MMDVM_Bridge2 to Analog_Bridge2. The
ports we select for each of these must be unique. If you look at
DVSwitch.ini you will see that we have already suggested a
unique set of ports for each mode. So in this case we would see
p1 = 32100 and p6 = 31100. P4 = 32103 and p3 = 31103. How
about the two AB USRP ports? P2 = 34001 and p3 = 32001.

■ So, 6 ports. Not including ircddbgateway or Brandmeister. MB1 to
AB1, AB1 to AB2, AB2 to MB2 and back again. Yes, it is a lot to
manage, but it you break it down and do it one step at a time, it
makes sense. It is a stream, one transform at a time.

■ What can you not do?
■ You can not use a mode twice in the same instance

■ You can ​not​ bridge DMR to YSF ​and​ bridge YSF to NXDN
in the same instance. This type of situation may arise
when you are building clusters. You may want to cluster
DMR, YSFn and NXDN. To do this, use multiple instances
of MMDVM_Bridge and combine the modes using either a
common reflector or other tool like confbridge in the hblink
package.

■ Do you need a gateway?
Some modes can function without a gateway (DMR and YSF). Other
modes, set your ​MMDVM_Bridge.ini​ network to work with the gateway. In
the sample MMDVM_Bridge.ini we have set the addresses and ports to
point to predefined servers so that you can test.

■ Managing talk group translations
■ Simple translations are handled by export rules in ​DVSwitch.ini

Pay attention to the word export. These rules define what is done
to the the data as it is exported to a receiver.

■ More complex rules would be handled by conference bridge
■ Bridges vs Clusters

■ A bridge connects two networks together in a bidirectional mode
■ A cluster is a collections of bridges usually on a single host. The

idea of a cluster is to bring many modes together into a single
unified place where each mode can be heard by every other
mode.

○ Debugging

■ General comment. When setting up new software and hardware, change
as little as possible. We have tried to set the default in the config file to
sane values most people will use. Read the comments associated with
the entry. And, last but not least, backup the file BEFORE you edit it.

■ How to report an error

■ Short and precise title (HELP! Is not what we have in mind here)
The title may be the most important part of the report as it is read
the most. If you want help, make a title that people want to read.

■ Concise description, steps to reproduce and if need suggested
behavior
Bug hunting is time consuming work. If you want a bug to get
fixed, make sure you give enough information to reproduce the
problem. What did you do? Was there something different
between when it works and when it does not? What did you
expect it to do? Can you describe the audio issue? If not can you
enclose a recording of the audio?

■ Environment
■ Hardware platform (ARM, X86, VPS, etc)
■ Operating system and version (uname -a)

■ Application version and build time stamp
The version and build timestamp are found in the log file when the
app is launched. Please make sure you are not reporting a bug
that has already been fixed!

■ Configuration files
In order to reproduce the issue, we will need to re-create your
environment. Your configuration files are the key element.
MMDVM_Bridge.ini, DVSwitch.ini and Analog_Bridge.ini are
needed at a bare minimum. Please do not just paste them in the
message, enclose them. It makes our job easier. You may have
multiple versions of a file (transcoders have multiple
Analog_Bridge.ini files)

■ Log files
Log files are the other artifact that helps us debug an issue. What
did the app do with a specific input? Was there an error? What
happened before the error occurred? The log files tell us this and
more. Your log files may appear in several directories. There are
default locations, but your ini files can change that. You should
enclose your log files in the message. The log level is important to
our debugging efforts. For most things, a logLevel of 2 is sufficient
detail to debug the problem. However, sometimes a very verbose
version may be asked for and you would need to set the logLevel
to 1.

■ PLEASE avoid sending screenshots
■ Most times, but not all, the first error and the last error tell you a

great deal. You don’t have to fully understand the error to trouble
shoot. Look for key words that you recognize.

■ Follow up
Once a developer says a bug has been fixed, please re-test and
make sure it REALLY has been fixed. Did we fix the bug and
cause 3 more? Oops! (nah, that never happens)

■ What went wrong?
■ Install errors

■ Are you on the right version of the operating system?
Remember the packages require the correct version of

Debian.
■ Did you update/upgrade?
■ Firewall enabled?
■ APT sources updated?
■ ASL: kernel headers for dahdi?
■ What error message did you get?

■ Can’t connect to Network source
■ Are your ports and IP address correct?
■ Can you ping the IP address?
■ Is the ID correct?
■ Is the gateway running?
■ Is the gateway listening to the ports you think it is?

netstat -unap is your friend.
■ Is the firewall blocking the traffic?
■ Is the network available at the time of launch?

Can you connect after the system is started and you log
in? That is a good indication the network is not ready when
the system starts your program.

■ No traffic in either direction
■ Check your network sources
■ Check your ​DVSwitch.ini​ ports
■ If Transcoding, check your ​Analog_Bridge.ini​ ports
■ Is the Pi-Star firewall enabled?
■ Check the logs. Any errors?

■ One way traffic
■ Check ports
■ Check destination network
■ Log files

■ If transcode, check the AB log files for traffic
■ If like data type check MB log files

■ Port open error messages

■ Cannot bind the UDP address
■ Make sure you do not have another instance launched (ps)

and netstat -unap
■ Make sure you have your ports defined properly
■ Use netstat to find port conflicts

■ Choppy or bad audio
■ USB Latency set? Look at the startup of Analog_Bridge

and you will see a log line just after the DV3000 is
initialized which documents the latency of your USB port.
If it is greater than 4, you should set it lower. We
recommend 1. To lower the latency as root:

echo​ 1 > sys/bus/usb-serial/devices/ttyUSB0/latency_timer

Where USB0 is the USB port defined in Analog_Bridge.ini
■ Emulator not working? When a packet is sent to the

emulator for encode/decode and that transaction times out
a single log message is generated. Look at the
Analog_Bridge log file for “Emulator timed out” messages.

■ Bad network connection?
■ Run AMBETest4.py? See the discussion of this utility in

the below.
■ Metadata errors

■ Wrong callsigns
■ Make sure that you have set the callsigns in

MMDVM_Bridge.ini and the DMR IDs in
MMDVM_Bridge.ini, DVSwitch.ini and
Analog_Bridge.ini. Also, make sure you are set to
get updates to the ID database files on a periodic
basis. The data files will be re-read by the
applications every 24 hours.

■ Wrong talk groups
■ DVSwitch.ini defines the export talkgroups most

modes will use.
■ Data files: DMR, NXDN

■ Other error messages
■ Got xxx and expected yyy

■ This happens when you set up an import for a
specific audio type and do not get the type
expected. This can happen if you have the ports
wrong or if you have AB set to export the wrong
AMBEType.

■ Unknown tag
■ Debugging single instance vs multiple instance

■ It is sometimes hard to find just the right information in a
log file when it has the debug output from two modes
intermixed in it. So, it is suggested that sometimes it is
easier to take a single instance MMDVM_Bridge setup and
split it up into two separate instances with each having its
own log files and debug settings. This will allow you to
isolate each side of the transaction and possibly arrive at a
solution to the problem with less effort. Once the problem
has been identified and fixed, go back to the single
instance version of the application.

■ Tools
■ Run program in foreground

■ Run your bridge in the foreground to help debug any
problems in its execution. Each application would be
opened up in a separate terminal window so you can
watch each part of the bridge operate. Once you have
verified that a component is operating without any issues,
then start it up in the background. Before calling it
“Mission Accomplished”, you can run the application in the
background and tail -F the log file in the foreground. This
will allow you to watch the realtime execution of the bridge
while it is running it its intended state.

■ Log files
■ Log files are your friend. They help in debugging problems

with the bridge, verifying proper execution of the software
and finding issues created by users connecting to your
bridges (loopers, etc). Get familiar with the log output of
each application in the system. They all use a similar
format, so once you learn its layout, each one should be
easy to consume. The log levels that are defined in the
config files are the same, moving from DEBUG (very
verbose with hex dumps, etc) to only FATAL errors being
output to the logs. Normally you would set your log levels
the the least amount of information needed to verify proper
execution of the application. But, don’t set them too low,
because if you have to inspect the logs at a later time and
the levels was not verbose enough, you will have lost a
valuable source of information.

■ netstat
■ The single most common problem with setting up a bridge

is getting the port assignments correct. There are a lot of
them and they are scattered across several different ini
files (​MMDVM_Bridge.ini​, ​DVSwitch.ini​, ​Analog_Bridge.ini

and rpt.conf). Netstat is a program that will tell you which
applications are listening on which ports. This will help you
debug and verify that each application is listening where
you thought it should be.

■ The bridge only uses UDP packets to communicate
between components, so the netstat command would just
show UDP type of listeners. On Debian based systems
the syntax would be

■ netstat -unap
■ top

■ The bridge is very efficient. Typical cpu utilization for any
bridge component should be very small, in the single digits.
The only component that “can” take up a greater amount of
cpu utilization is the software vocoder, OP25, used in
Analog_Bridge. If you suspect that there is a utilization
issue, top will allow you to see the resource needs of each
of the bridge components and to verify that they are
operating correctly

■ AMBETest4.py
■ AMBETest4.py is a confidence test program for the

DV3000U USB dongle. Over time we have seen several
instances where the bridge software has appeared to fail
even though the software was set up correctly. In the
investigation that followed it was found that the DV3000U
was rather sensitive to the voltage on the USB port. We all
know that USB should supply 5V to the USB device, but
we found that users had their Raspberry PI powered with
supplies (wall warts) that allowed the voltage to sag when
the processor or dongle was under load. In order to help
users have confidence in their hardware setup,
AMBETest4.py was created. This program will exercise
the USB dongle and inspect the results from the dongle
looking for any errors that may be produced. The program
will run through a set of tests including reset, mode
changes, encode and decode. AMBETest4.py is a python
program, so please make sure to have a basic python
runtime installed.

■ AMBETest4.py has several command line parameters that
you can use

■ -v will cause verbose operation of the program
■ -e will cause the program to stop on any error

■ -s serialPort will tell the test program that the
DV3000U is connected to the USB port with a full
path name (/dev/ttyUSB0)

■ -i ipAddress will tell the program to use the
ipAddress to send commands to ambe server

■ -n will tell the program to use the newer baud rate
460800

■ Charles / wireshark
■ Although not needed very often these tools are invaluable

in debugging network based problems. Packet corruption,
dropped packets, slow arrival, and other conditions can be
diagnosed with these tools.

■ Hoseline
If on DMR or bridging to DMR, hoseline is a good tool to use to
listen to yourself.

■ Parrot
If you are not on DMR, you can still monitor yourself using the
parrot.

○ Advanced topics
■ MMDVM_Bridge DMR vs HB_Bridge: why use one or the other?

You might be wondering why there are two different ways of bridging to
DMR, MMDVM_Bridge and HB_Bridge (and IPSC_Bridge). At first these
seem to be duplicates, but in reality, each program adds unique features.

HB_Bridge and IPSC_Bridge are part of a larger package of applications
called DMRLink and HBLink which allow you to bridge homebrew
(MMDVM) and IPSC (Motorola) repeaters. The package also has
extensive functions for combining talkgroups together into clusters without
the need for involving other network operators. DMRLink/HBLink is a
mature package and is able to run on virtual servers as well as real
hardware. It is written in Python and is easily installed. If you are looking
to create a local cluster of repeaters with a bridge to other modes (Analog
or other digital modes) then HBLink is a perfect choice. Conference
Bridge is an awesome tool in this package which allows you to customize
your talk groups and access rules. You are in control, not some network
operator.

MMDVM_Bridge is a easy to use, self contained application which excels
in bridging digital modes together. Its best use case is when two digital
modes from foreign networks need to be joined. Its configuration is
familiar (the same as MMDVMHost). While you ‘could’ use HB_Bridge
and MMDVM_Bridge together to bridge DMR to another mode, a single

instance of MMDVM_Bridge will be lighter on system resources and
configuration.

■ Datafile updates
■ Log rotation
■ Systemd units

■ There are several systemd units that have been installed for you.
These units are there to help in starting, stopping and getting the
status of any module. During development or debugging of a
bridge, you will probably want to run a program in the foreground
so you can see the output on your terminal, but once a program is
ready to be in production, the systemd units can be used to
automatically launch each service at boot. If you want to see a log
for a running unit, use ​tail -F​ to watch the output.

■ Services installed
■ mmdvm_bridge, analog_bridge, md380_emu, AllstarLink

(asterisk, updatenodelist)
■ Starting a service

■ systemctl start serviceName
Where serviceName can be mmdvm_bridge,

analog_bridge, md380_emu, asterisk or updatnodelist
■ Stopping a service

■ systemctl stop serviceName
Where serviceName can be mmdvm_bridge,

analog_bridge, md380_emu, asterisk or updatnodelist
■ Getting the status of a service

■ systemctl status serviceName

■ Dashboards
■ YSF - ​https://github.com/dg9vh/YSFReflector-Dashboard
■ NXDN -

https://github.com/N4IRS/MMDVM-Install/tree/master/NXDN/NXD
NReflector-Dashboard

■ P25 -
https://github.com/N4IRS/MMDVM-Install/tree/master/P25/P25Refl
ector-Dashboard

■ Links to things on the web
■ Packages

■ http://dvswitch.org/install-dvswitch-repo
■ Protocol descriptions

■ http://www.qsl.net/kb9mwr/projects/dv/nxdn/NXDN-TS-1-A
_v0103.pdf

https://github.com/dg9vh/YSFReflector-Dashboard
https://github.com/N4IRS/MMDVM-Install/tree/master/NXDN/NXDNReflector-Dashboard
https://github.com/N4IRS/MMDVM-Install/tree/master/NXDN/NXDNReflector-Dashboard
http://dvswitch.org/install-dvswitch-repo
http://www.qsl.net/kb9mwr/projects/dv/nxdn/NXDN-TS-1-A_v0103.pdf
http://www.qsl.net/kb9mwr/projects/dv/nxdn/NXDN-TS-1-A_v0103.pdf

■ https://www.yaesu.com/downloadFile.cfm?FileID=9036&Fil
eCatID=263&FileName=Yaesu_Amateur%20Radio%20Dig
ital%20Specs_1V02_EN-GB.pdf&FileContentType=applica
tion%2Fpdf

■ https://wiki.brandmeister.network/index.php/Homebrew_re
peater_protocol

■ Cool projects on Git
■ https://github.com/g4klx
■ https://github.com/dl5di/OpenDV
■ https://github.com/n0mjs710/DMRlink
■ https://github.com/n0mjs710/HBlink
■ https://github.com/n0mjs710/dmr_utils
■ https://github.com/n0mjs710/DMRmonitor
■ https://github.com/boatbod/op25
■ https://github.com/juribeparada
■ Anything from DVSwitch

■ Message boards
■ DVSwitch

■ https://dvswitch.groups.io/g/support
■ https://dvswitch.groups.io/g/main
■ https://dvswitch.groups.io/g/Quantar-Bridge
■ https://dvswitch.groups.io/g/allstarlink

■ MMDVM
■ https://groups.yahoo.com/neo/groups/mmdvm/info

■ Networks
■ http://brandmeister.network/
■ http://www.dmr-marc.net/
■ http://www.dstarusers.org/
■ https://allstarlink.org/
■ http://www.nxdninfo.com/
■ http://nxmanager.weebly.com/
■ https://www.yaesu.com/jp/en/wires-x/index.php

■ Metadata transformations
■ The original model was for DMR so you will see most of the fields

support this mode
■ The system tries as hard as it can to make a valid DMR ID /

callsign that matches the transmission
■ Datafiles files are maintained for DMR and NXDN IDs and callsign
■ The rules are often mode dependant

■ DMR assumes the metadata it imports is perfect and
exports DMR ID and callsign if found in the datafile

■ P25 uses the DMR datafile for lookup and rules

https://www.yaesu.com/downloadFile.cfm?FileID=9036&FileCatID=263&FileName=Yaesu_Amateur%20Radio%20Digital%20Specs_1V02_EN-GB.pdf&FileContentType=application%2Fpdf
https://www.yaesu.com/downloadFile.cfm?FileID=9036&FileCatID=263&FileName=Yaesu_Amateur%20Radio%20Digital%20Specs_1V02_EN-GB.pdf&FileContentType=application%2Fpdf
https://www.yaesu.com/downloadFile.cfm?FileID=9036&FileCatID=263&FileName=Yaesu_Amateur%20Radio%20Digital%20Specs_1V02_EN-GB.pdf&FileContentType=application%2Fpdf
https://www.yaesu.com/downloadFile.cfm?FileID=9036&FileCatID=263&FileName=Yaesu_Amateur%20Radio%20Digital%20Specs_1V02_EN-GB.pdf&FileContentType=application%2Fpdf
https://github.com/dl5di/OpenDV
https://github.com/n0mjs710/DMRlink
https://github.com/n0mjs710/HBlink
https://github.com/n0mjs710/dmr_utils
https://github.com/n0mjs710/DMRmonitor
https://github.com/boatbod/op25
https://github.com/juribeparada
https://dvswitch.groups.io/g/support
https://dvswitch.groups.io/g/main
https://dvswitch.groups.io/g/Quantar-Bridge
https://dvswitch.groups.io/g/allstarlink
https://groups.yahoo.com/neo/groups/mmdvm/info
http://brandmeister.network/
http://www.dmr-marc.net/
http://www.dstarusers.org/
https://allstarlink.org/
http://www.nxdninfo.com/
http://nxmanager.weebly.com/
https://www.yaesu.com/jp/en/wires-x/index.php

■ Yaesu will use callsign then DMR ID upon import and will
lookup callsign in datafile and set DMR ID if found. If not
found it will export the fallback ID

■ D-Star will use callsign then DMR ID upon import and will
lookup callsign in datafile and set DMR ID if found. If not
found it will export the fallback ID

■ NXDN will use the callsign then the ID to lookup the NXDN
ID on import. On export it will set the DMR ID and callsign
if found.

○ Common Configurations
■ Analog bridge to digital network

■ Example: NXDN to ASL
■ Important parts to demonstrate

■ ASL -> NXDN metadata (since none comes from ASL)
■ Audio level setting
■ Vocoder setup and usage
■ ASL configuration files

■ Digital bridge to like format
■ Example: YSFn to DMR
■ Important parts to demonstrate

■ Single instance setup
■ Enabling 2 modes in ​MMDVM_Bridge.ini

The example of a YSFn to DMR is the simplest
bridge you can build. There are no gateways
required. You can use a single instance of
MMDVM_Bridge.

■ DVSwitch.ini​ port crossover
■ Datafile locations

■ Digital bridge to unlike format
■ P25 to DMR
■ Important parts to demonstrate

■ MB -> transcoder -> MB setup
■ Audio level setting

■ Multi-mode cluster
■ Example: P25, DMR, NXDN, YSFN, D-Star, ASL

● Analog_Bridge
○ Used to convert a network stream of TLV packets into PCM and back again
○ Two usage scenarios

■ Bridge ASL to a digital network
■ ASL has a great channel driver called ​chan_usrp​. This driver was

developed to connect ASL to specialized hardware, but does not
actually require the hardware. The USRP protocol includes
signaling (TX/RX transitions) and audio transfer using UDP. The

audio format is 8KHZ signed 16 bit PCM samples. Analog_Bridge
was developed to consume these packets and transcode them to
several digital audio formats.

■ Transcode one digital format to another
■ The process of transcoding one digital audio format to another is

to take the source audio format and convert it to a form that can
then be encoded into a new format. All of the audio formats
encode PCM into digital audio and decode digital audio into PCM,
so this can be used to be the basis of the transcoder. In general
terms, you use two instances of Analog_Bridge, one to handle the
first format of digital and the second instance to handle the other
format. These instances are then set to feed each other in the
stream and presto, transcoder.

■ To create a transcoder from format A to format B follow these
general steps. In the description below substitute A and B for your
digital format like DMR, NXDN, etc. First take a “clean”
Analog_Bridge.ini file and create two new files
Analog_Bridge_A.ini and Analog_Bridge_B.ini. Edit the format A
file first and change

■ Below where ever it says ​MODE_X​ use your mode...
■ [AMBE_AUDIO]

■ ambeMode = ​MODE_X
■ txPort = the.rxPort.for.​MODE_X​.in.dvswitch.ini
■ rxPort = the txPort.for.​MODE_X​.in.dvswitch.ini

■ [USRP]
■ txPort = xxxx
■ rxPort = yyyy

■ Vocoder
■ If ​MODE_X​ is DMR, YSFn or NXDN, enable the

emulator and use it on a unique port
■ If ​MODE_X​ is IMBE or YSFw disable the emulator

and DV3000
■ If ​MODE_X​ is D-Star set up the DV3000 as a serial

or IP connection to AMBEServer
■ Now, edit Analog_Bridge_B.ini and do the same thing, paying

SPECIAL attention to the [USRP] txPort and rxPort. They should
be reversed from the Analog_Bridge_A.ini version.

○ Connecting to ASL
■ Analog_Bridge speaks USRP
■ Turn on the USRP channel driver in ​modules.conf
■ Set up the ​rpt.conf​ to match the ports in ​Analog_Bridge.ini
■ Do NOT send Allison to the digital network!
■ Private node?

○ Transcode
■ Two instances of AB are required
■ Each instance will point (crossover) their PCM data at each other
■ The TLV ports will point at each respective Partner application
■ Partner1 < -- > AB1 < -- > AB2 < -- > Partner2

■ AB1 ambeMode will match Partner1 audio format
■ AB2 ambeMode will match Partner2 audio format

■ Use two versions of the ​Analog_Bridge.ini​ file,
 one for each side of the transcode

○ Defining input and output networking ports
○ Setting audio levels

■ Start with AUDIO_UNITY for both dmrAudio and aslAudio settings
○ Defining the vocoder to use

■ Analog_Bridge is capable of using three classes of vocoders
■ Hardware DV3000U, PiDV, DVMega AMBE

■ Support for DMR, YSFN, NXDN and D-Star
■ Direct serial and IP (ambe server) modes are supported

■ Software
■ The md380-emulator

■ Support for DMR, YSFN, NXDN
■ The OP25 vocoder

■ Support for DMR, YSFN, NXDN, D-Star, P25 and
YSFW

■ Quality vs cost
■ Will your CPU support all vocoders?

■ When we need to transcode one audio format to another we need
to be able to decode from format A into PCM and then encode
from PCM into format B. This means we would need to make sure
your environment has support for both vocoders in the transcode
sequence.

■ As described in other sections, we support AMBE, IMBE and
DSAMBE audio formats, but there are differing levels of support
and quality for these formats.

■ AMBE is supported in hardware (USB or AMBEServer),
md380-emulator on supported environments and OP25 vocoder
for all platforms. The md380-emulator is available on x86 and
ARM V7 (with div support) which includes the Raspberry Pi 2 and
3, Allwinner H3 and H5 processors.

■ IMBE is supported in software on all platforms using the OP25
vocoders

■ DSAMBE (D-Star) is supported in hardware (USB or
AMBEServer) and (but you will not be happy) by using the OP25
vocoder.

○ Defining the default metadata
○ Debugging

■ DV3000 errors
■ Extensive checking of each DV3000 packet is done
■ Upon finding an error, it is reported in the log
■ Errors include

■ DV3000 header is short
■ DV3000 start byte not found
■ DV3000 packet size does not match bytes in stream
■ DV3000 has unexpectedly reset

You can almost bet this is a power problem.
■ DV3000 return type not correct

● Quantar_Bridge
○ Connects a Quantar P25 repeater to an MMDVM network
○ For each talk group there is a reflector.
○ Each reflector can be on a single host or a host can have more then one reflector
○ Prerequisites

■ Requires a Cisco router supporting STUN
■ Recommended hardware
■ Recommended software version

■ Requires P25Gateway to connect to the network
○ Quantar_Bridge system configuration

■ Cisco​ router configuration
■ The [QUANTAR] stanza

■ logFilePath should be set to the full path and file name of your log
file. The log file may be rotated without stopping Quantar_Bridge
(logrotate).

■ logLevel is defined as
■ 0=No logging, 1=Debug, 2=Message, 3=Info, 4=Warning,

5=Error, 6=Fatal
■ Address should be set to the IP address of the Partner application

receiving the TLV frames from Quantar_Bridge (probably
MMDVM_Bridge or Analog_Bridge)

■ TXPort should be set to the port that the Partner application is
listening on for TLV frames

■ RXPort should be set to a unique port number that
Quantar_Bridge is listening on for TLV frames

■ quantarPort should be set to the port defined in the Cisco router
config. Quantar_Bridge will listen on this port for STUN/HDLC
frames from the Cisco router.

■ Partner configuration

■ Make sure there is a listener on the port defined as TXPort in the
[QUANTAR] stanza

■ If using Analog_Bridge, make sure that the exported TLV audio
format is IMBE

■ Debugging
■ Turn on the debug setting in the [QUANTAR] stanza. This

produces a LOT of data. You will not want this enabled for long.
This also forces logLevel to be 1, so no need to set that as well.

○ Advanced topics
■ Using a hotspot on my P25 network

■ With Quantar_Bridge this is easy. Just make sure that your
repeater and the hotspot are connected to the same reflector and
you are good to go.

■ Using a Yaesu Fusion radio in wide mode on the P25 network
■ You have two options to use this radio on your network. One is to

use the ysf2p25 application to gateway into the p25 reflector. The
other is to set up a bridge to a Yaesu Fusion Wide reflector and
your P25 reflector using MMDVM_Bridge.

● HB_Bridge
○ Used to connect the bridge to a HomeBrew network
○ Provide a server for HB clients to connect to
○ HBLink is a subclass of HBSYSTEM (hblink.py)

■ The subclass inherits all of the capabilities of its superclass
■ HB_Bridge does not require one to run hblink.py

■ DO NOT RUN IT except for testing (see below)
○ Debugging HB_Bridge

■ Now, and only now can you run hblink.py stand alone
● IPSC_Bridge

○ Used to connect the bridge to a IPSC network
○ Provide a Master for IPSC clients to connect to

